Advanced Features#
Pointers#
Every variable is a memory location and every memory location has its address defined which can be accessed using ampersand (&) operator which denotes an address in memory. A pointer is a variable whose value is the address of another variable.
int main () {
int var = 20; // actual variable declaration.
int *ip; // pointer variable
ip = &var; // store address of var in pointer variable
cout << "Value of var variable: ";
cout << var << endl;
// print the address stored in ip pointer variable
cout << "Address stored in ip variable: ";
cout << ip << endl;
// access the value at the address available in pointer
cout << "Value of *ip variable: ";
cout << *ip << endl;
return 0;
}
When the above code is compiled and executed, it produces result something as follows:
Value of var variable: 20
Address stored in ip variable: 0xbfc601ac
Value of *ip variable: 20
References#
A reference variable is an alias, that is, another name for an already existing variable. Once a reference is initialized with a variable, either the variable name or the reference name may be used to refer to the variable.
References are often confused with pointers but three major differences between references and pointers are −
- You cannot have NULL references. You must always be able to assume that a reference is connected to a legitimate piece of storage.
- Once a reference is initialized to an object, it cannot be changed to refer to another object. Pointers can be pointed to another object at any time.
- A reference must be initialized when it is created. Pointers can be initialized at any time.
int main () {
// declare simple variables
int i;
double d;
// declare reference variables
int& r = i;
double& s = d;
i = 5;
cout << "Value of i : " << i << endl;
cout << "Value of i reference : " << r << endl;
d = 11.7;
cout << "Value of d : " << d << endl;
cout << "Value of d reference : " << s << endl;
return 0;
}
Overloading#
C++ allows you to specify more than one definition for a function name or an operator in the same scope, which is called function overloading and operator overloading.
Function Overloading in C++#
You can have multiple definitions for the same function name in the same scope. The definition of the function must differ from each other by the types and/or the number of arguments in the argument list. You cannot overload function declarations that differ only by return type.
class printData {
public:
void print(int i) {
cout << "Printing int: " << i << endl;
}
void print(double f) {
cout << "Printing float: " << f << endl;
}
void print(char* c) {
cout << "Printing character: " << c << endl;
}
};
Operators Overloading in C++#
You can redefine or overload most of the built-in operators available in C++. Thus, a programmer can use operators with user-defined types as well.
Overloaded operators are functions with special names: the keyword "operator" followed by the symbol for the operator being defined. Like any other function, an overloaded operator has a return type and a parameter list.
class Box {
public:
double getVolume(void) {
return length * breadth * height;
}
void setLength( double len ) {
length = len;
}
void setBreadth( double bre ) {
breadth = bre;
}
void setHeight( double hei ) {
height = hei;
}
// Overload + operator to add two Box objects.
Box operator+(const Box& b) {
Box box;
box.length = this->length + b.length;
box.breadth = this->breadth + b.breadth;
box.height = this->height + b.height;
return box;
}
private:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box
};
// Main function for the program
int main() {
Box Box1; // Declare Box1 of type Box
Box Box2; // Declare Box2 of type Box
Box Box3; // Declare Box3 of type Box
double volume = 0.0; // Store the volume of a box here
// box 1 specification
Box1.setLength(6.0);
Box1.setBreadth(7.0);
Box1.setHeight(5.0);
// box 2 specification
Box2.setLength(12.0);
Box2.setBreadth(13.0);
Box2.setHeight(10.0);
// volume of box 1
volume = Box1.getVolume();
cout << "Volume of Box1 : " << volume <<endl;
// volume of box 2
volume = Box2.getVolume();
cout << "Volume of Box2 : " << volume <<endl;
// Add two object as follows:
Box3 = Box1 + Box2;
// volume of box 3
volume = Box3.getVolume();
cout << "Volume of Box3 : " << volume <<endl;
return 0;
}
Not Overloadable Operators#
- ::
- .*
- .
- ?: